Ermer, O. \& Lifson, S. (1973). J. Amer. Chem. Soc. 95, 4121-4132.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Krogsgaard-Larsen, P. \& Hjeds, H. (1974). Acta Chem. Scand. B28, 533-538.
Krogsgaard-Larsen, P. \& Johnston, G. A. R. (1975). J. Neurochem. 25, 797-802.

Krogsgafd-Larsen, P., Johnston, G. A. R., Curtis, D. R., Game, C. J. A. \& McCulloch, R. M. (1975). J. Neurochem. 25, 803-809.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

X-RAY system (1972). Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1976). B32, 3339

Dimethyl 8-exo-Phenylbicyclo[5.1.0]ecta-2,4-diene-8-phosphonate

By R. Hoge
Fachrichtung Kristallographie der Universität des Saarlandes, Im Stadtwald, D-6600 Saarbrücken, Germany (BRD)
and G. Maas
Fachbereich Chemie der Universität Kaiserslautern, Pfaffenbergstr. 95, D-6750 Kaiserslautern, Germany (BRD)

(Received 1 June 1976; accepted 12 June 1976)

Abstract

C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}\), monoclinic, $P 2_{1} / c ; a=13.651$ (9), $b=12 \cdot 406$ (8), $c=9 \cdot 037$ (5) $\AA, \beta=91 \cdot 25$ (2) ${ }^{\circ} ; Z=4$, $M=290 \cdot 28, D_{x}=1 \cdot 261 \mathrm{~g} \mathrm{~cm}^{-3}$. The highly strained nature of the bicyclic ring system becomes evident from very short C-C single bonds and a torsion angle around one double bond of 29°.

Introduction. The compound is obtained by photolysis or thermolysis of dimethyl (diazobenzyl)phosphonate in excess cycloheptatriene. It is the minor product of the $1: 1$ addition of the intermediately formed carbene to the solvent. Moreover, there exists a photochemical equilibrium with the analogous endo-phenyl isomer
(Maas, 1976) which is the major product of the direct carbene addition to cycloheptatriene. Crystals for X-ray analysis were obtained by sublimation of the crude product and recrystallization from ether (m.p. $129^{\circ} \mathrm{C}$).

Systematic extinctions on Weissenberg and precession photographs ($h 0 l$ with $l=2 n+1$ and $0 k 0$ with $k=$ $2 n+1)$ indicated space group $P 2_{1} / c$. Intensities from a crystal fragment, $0.24 \times 0.14 \times 0.09 \mathrm{~mm}$, were collected on a Siemens diffractometer (AED) with Ni-filtered $\mathrm{Cu} K \alpha$ radiation and a scintillation counter. With a $\theta / 20$-scan and the five-values method, 1688 reflexions in the range $0<\theta<51.45^{\circ}$ were measured (scan speed $0 \cdot 24 \mathrm{~s} / 0 \cdot 01^{\circ}$). Two control reflexions (900 and 080)

Table 1. Atomic coordinates and thermal parameters of the non-hydrogen atoms (all $\times 10^{4}$, e.s.d.'s are in parentheses)
The thermal ellipsoid is defined by $\exp \left[-\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+B_{12} h k a^{*} b^{*}+\ldots\right)\right]$.

	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
P	3255 (1)	5788 (1)	6264 (1)	59 (1)	79 (1)	125 (1)	-13(1)	-29 (2)	-7 (2)
$\mathrm{O}(1)$	4021 (2)	6264 (3)	5195 (4)	99 (3)	104 (3)	204 (5)	-78(4)	34 (6)	-40 (6)
$\mathrm{O}(2)$	3726 (2)	4674 (2)	6693 (3)	77 (2)	99 (3)	221 (6)	16 (4)	-100 (6)	33 (6)
$\mathrm{O}(3)$	3056 (2)	6474 (3)	7527 (3)	82 (2)	139 (3)	148 (5)	-13 (5)	-41 (5)	-94 (7)
C(1)	1197 (4)	4900 (5)	7461 (5)	86 (4)	146 (5)	163 (8)	-39(7)	46 (8)	-23 (11)
C(2)	445 (6)	5387 (7)	8079 (7)	210 (8)	248 (10)	193 (10)	11 (15)	162 (15)	-44 (17)
C(3)	-77(4)	6283 (6)	7675 (6)	81 (4)	270 (10)	224 (10)	10 (10)	-19 (10)	-272 (16)
C(4)	247 (5)	7053 (6)	6775 (8)	140 (6)	173 (7)	324 (13)	99 (11)	-41 (14)	-182 (16)
C(5)	1109 (4)	7045 (4)	5862 (6)	80 (3)	125 (5)	212 (9)	61 (7)	-71 (9)	-99 (11)
C(6)	1292 (3)	6009 (4)	5052 (6)	66 (3)	105 (4)	138 (6)	33 (6)	-49 (7)	-57 (8)
C(7)	1318 (3)	4966 (4)	5822 (5)	73 (3)	107 (4)	136 (7)	-32 (6)	-9 (7)	-52 (9)
C(8)	2249 (3)	5373 (3)	5111 (4)	55 (3)	76 (3)	116 (5)	- 2 (5)	-20 (6)	-4 (7)
C(9)	2540 (3)	4847 (3)	3678 (4)	55 (3)	76 (3)	118 (6)	1 (5)	-29 (6)	-17 (7)
C(10)	2626 (3)	5455 (3)	2398 (4)	69 (3)	77 (4)	134 (6)	4 (5)	-13 (7)	1 (7)
C(11)	2861 (3)	4981 (4)	1069 (5)	82 (3)	111 (4)	128 (6)	-19 (6)	-6 (7)	6 (9)
C(12)	3036 (4)	3889 (4)	1010 (5)	96 (4)	109 (4)	152 (7)	1 (7)	16 (8)	-57 (9)
C(13)	2975 (5)	3276 (4)	2265 (5)	106 (4)	77 (4)	207 (8)	27 (6)	0 (9)	-59 (9)
C(14)	2723 (3)	3748 (3)	3606 (5)	91 (4)	71 (4)	168 (7)	26 (6)	-12 (8)	-10 (8)
C(15)	4371 (5)	7341 (4)	5199 (7)	145 (5)	105 (5)	297 (12)	-77 (9)	-42 (13)	12 (13)
C(16)	4635 (4)	4683 (5)	7550 (6)	78 (4)	158 (6)	215 (9)	38 (8)	-82 (9)	53 (12)

A C 32B-13*
were monitored after every 23 reflexions; finally, F_{900} had diminished by 11% of its original value, F_{080} by 16%. Therefore, all reflexions were rescaled by a leastsquares line based on the 80 values of $\left|F_{900}\right|+\left|F_{080}\right|$ obtained in the course of the data collection. The eight strongest reflexions, with a peak maximum >18000 counts s^{-1}, were remeasured with Al foil as an attenuator and rescaled. The attenuation factor was determined with the 20 next strongest reflexions. No absorption correction was made $[\mu(\mathrm{Cu} K \alpha)=16 \cdot 25$ $\left.\mathrm{cm}^{-1}\right]$.

The structure was solved with MULTAN 74 (Main, Woolfson, Lessinger, Germain \& Declercq, 1974). Thirteen peaks from the resulting E map were accepted and refined by least squares $(\sin \theta / \lambda<0 \cdot 5)$. The remaining seven atoms were located on a difference map.

Table 2. Atomic coordinates $\left(\times 10^{3}\right)$ and isotropic B 's $\left(\AA^{2}\right)$ of the hydrogens

	x	y	B	
	x	\boldsymbol{z}		
$\mathrm{H}(1)$	$144(4)$	$421(4)$	$792(5)$	$6 \cdot 6(1 \cdot 3)$
$\mathrm{H}(2)$	$19(6)$	$508(6)$	$898(8)$	$13 \cdot 8(2 \cdot 5)$
$\mathrm{H}(3)$	$-69(4)$	$640(4)$	$823(6)$	$8 \cdot 5(1 \cdot 6)$
$\mathrm{H}(4)$	$16(5)$	$775(5)$	$647(7)$	$10 \cdot 5(1 \cdot 9)$
$\mathrm{H}(5.1)$	$153(4)$	$715(4)$	$677(6)$	$9 \cdot 1(1 \cdot 5)$
$\mathrm{H}(5.2)$	$136(4)$	$764(5)$	$526(6)$	$7 \cdot 8(1 \cdot 8)$
$\mathrm{H}(6)$	$104(3)$	$602(3)$	$400(4)$	$3 \cdot 8(1 \cdot 0)$
$\mathrm{H}(7)$	$95(3)$	$437(3)$	$534(4)$	$3 \cdot 8(1 \cdot 0)$
$\mathrm{H}(10)$	$254(3)$	$622(3)$	$242(4)$	$3 \cdot 3(0 \cdot 9)$
$\mathrm{H}(11)$	$288(2)$	$547(3)$	$23(4)$	$2 \cdot 3(0 \cdot 9)$
$\mathrm{H}(12)$	$325(3)$	$359(4)$	$91(5)$	$5 \cdot 5(1 \cdot 2)$
$\mathrm{H}(13)$	$308(3)$	$249(3)$	$224(5)$	$4 \cdot 8(1 \cdot 1)$
$\mathrm{H}(14)$	$254(3)$	$330(4)$	$458(5)$	$4 \cdot 9(1 \cdot 1)$
$\mathrm{H}(15.1)$	$434(5)$	$765(6)$	$608(8)$	$12 \cdot 8(2 \cdot 2)$
$\mathrm{H}(15.2)$	$386(6)$	$753(6)$	$459(9)$	$15 \cdot 7(2 \cdot 7)$
$\mathrm{H}(15.3)$	$500(6)$	$725(6)$	$493(8)$	$13 \cdot 9(2 \cdot 4)$
$\mathrm{H}(16.1)$	$481(4)$	$394(5)$	$757(6)$	$8 \cdot 7(1 \cdot 6)$
$\mathrm{H}(16.2)$	$455(4)$	$497(5)$	$850(6)$	$9 \cdot 6(1 \cdot 7)$
$\mathrm{H}(16.3)$	$523(4)$	$500(5)$	$688(6)$	$10 \cdot 0(2 \cdot 1)$

The structure was refined by block-diagonal leastsquares with 1268 reflexions with $F_{o}>4 \sigma\left(F_{o}\right)$. Unit weights were used. 16 out of 19 H atoms were found on a ΔF map. They were included in the structure factor calculation of two further least-squares cycles for the heavy atoms. The missing H atoms then appeared in a second difference synthesis. The H atoms were now included in the refinement with isotropic B 's, and a weighting scheme $w=1$ if $F_{o}<30 \cdot 5$, otherwise $\downarrow w=$ $F_{o} / 30 \cdot 5$. After three cycles, R was 0.045 and $R_{w} 0 \cdot 054$.

Final positional and thermal parameters are given in Tables 1 and 2, and the molecular geometry in Table 3.*

Discussion. The molecular structure is shown in Fig. 1 (thermal ellipsoids are at the 50% probability level) and Fig. 2.

Apart from the interchange of the $C(8)$ substituents, the overall structure very closely resembles that of the exo-phenyl isomer. However, since the steric requirements of the phosphonate group are bigger than those of a phenyl ring, at least one O atom always interacts with $C(1), C(5)$ and $H(5.1)$ of the bicyclic ring, regardless of how the phosphonate group is rotated about the $C(7)-P$ single bond (Fig. 2). The molecule avoids this repulsion by an increase of the angle between the cyclopropane ring and the $C(1)-C(7)-C(6)-C(5)$ plane. $C(1)-C(7)-C(8)$ and $C(5)-C(6)-C(8)$ are enlarged by 3.4 and 2.7° with respect to the endo-phenyl isomer, where this kind of steric repulsion does not exist. To a

[^0]Table 3. Molecular geometry
E.s.d.'s are 0.004-0.009 \AA for bond lengths, $0.3-0.7^{\circ}$ for bond angles and $0.6-0.9^{\circ}$ for torsion angles. Values in parentheses refer to dimethyl 8 -endo-phenylbicyclo[5.1.0]octa-2,4-diene-8-phosphonate (Maas, 1976).

$\mathrm{O}(1)-\mathrm{P}$	1.556 A	$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(15)$	125.9°
$\mathrm{O}(2)-\mathrm{P}$	1.570	$\mathrm{P}-\mathrm{O}(2)-\mathrm{C}(16)$	117.8
$\mathrm{O}(3)-\mathrm{P}$	$1 \cdot 454$	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	113.9
$\mathrm{O}(1)-\mathrm{C}(15)$	$1 \cdot 419$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	$113 \cdot 8$
$\mathrm{O}(2)-\mathrm{C}(16)$	1.448	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}$ (2)	102.1
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 325$ (1.374)	$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(8)$	$105 \cdot 4$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 366$ (1.365)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{C}(8)$	$101 \cdot 4$
C(3)-C(4)	1.336 (1.351)	$\mathrm{O}(3)-\mathrm{P}-\mathrm{C}(8)$	118.3
C(4)-C(5)	$1 \cdot 452$ (1.413)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120 \cdot 5$
C(5)-C(6)	$1 \cdot 502$ (1-480)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	118.5
$\mathrm{C}(7)-\mathrm{C}(1)$	$1 \cdot 496$ (1-502)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.2
C(7)-C(6)	$1 \cdot 469$ (1-484)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.7
$\mathrm{C}(8)-\mathrm{C}(6)$	1.527 (1.531)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 0$
$\mathrm{C}(8)-\mathrm{C}(7)$	1.523 (1.536)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120 \cdot 5$
$\mathrm{C}(8)-\mathrm{P}$	$1 \cdot 781$ (1.784)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$120 \cdot 0$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 511$ (1-511)	$\mathbf{C}(9)-\mathbf{C}(8)-\mathrm{P}$	114.4 (115.0)
C(9)--C(10)	1.388	$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{P}$	$121 \cdot 3$ (113.6)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1 \cdot 382$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{P}$	119.2 (113.4)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 377$	C(6)-C(8)-C(9)	$115 \cdot 7$ (120.6)
C(12)-C(13)	$1 \cdot 370$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$117 \cdot 1$ (124.2)
C(13)-C(14)	$1 \cdot 395$	$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(7)$	57.6 (57.9)
C(14)-C(9)	1.388	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$61 \cdot 3 \quad(60 \cdot 9)$

C(7)-C(6)-C(8)	$61 \cdot 1(61 \cdot 2)^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$123 \cdot 2(120 \cdot 5)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$121 \cdot 0(120 \cdot 3)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	$119.7(118 \cdot 4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$131 \cdot 5(132 \cdot 2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$124 \cdot 6(122 \cdot 6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$128 \cdot 6(127 \cdot 0)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$115 \cdot 3(119 \cdot 8)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121 \cdot 7(119 \cdot 4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	$125 \cdot 2(121 \cdot 8)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-28 \cdot 9(-30)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-20 \cdot 9(-23)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$10 \cdot 9$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$42 \cdot 4$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(4)$	$-51 \cdot 8(-55)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	$-2 \cdot 1$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	$51 \cdot 0$

more marked extent, the $\mathrm{C}(8)-\mathrm{P}$ bond turns away from the bicyclic skeleton: $\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{P}$ and $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{P}$ are augmented by 7.7 and 6.8° compared with the exophosphonate isomer.

Fig. 1. An ORTEP plot of dimethyl 8-exo-phenylbicyclo[5.1.0]-octa-2,4-diene-8-phosphonate.

Fig. 2. Possible steric interactions between the phosphonate group and the bicyclic system become evident from this plot.

In the diene moiety of the bicyclic ring, differences between single- and double-bond lengths are more distinct than in the endo-phenyl isomer (Table 3). However, a $C(2)-C(3)$ contact of $1.366 \AA$ is again found; even for a $C s p^{2}-C s p^{2}$ single bond, this is a surprisingly short distance: the normal single-bond length between $C s p^{2}$ atoms in unsaturated seven-membered rings is 1.40-1.46 \AA (for some examples see Bürgi, 1975).

Another uncommon feature concerns the torsion angle of 29° about one of the two double bonds in the cycloheptadiene ring. Dihedral angles about double bonds in cyclic polyenes do not exceed ca 18° (e.g. Gramaccioli, Mimun, Mugnoli \& Simonetta, 1973) and structures with a nearly planar conjugated π system are known, e.g. cycloheptatriene $-\mathrm{Mo}(\mathrm{CO})_{3}$ (Dunitz \& Pauling, 1960). The dihedral angle between the two double bonds approaches 21°. This lack of planarity may be one reason why the 1,3-diene system is not prone to a Diels-Alder reaction, even at elevated temperature.

This work was supported by the Deutsche Forschungsgemeinschaft. G. M. thanks the Fonds der Chemischen Industrie for a Liebig fellowship. Computational work was done on the TR 440 computers in Saarbrücken and Kaiserslautern.

References

Bürgi, H.-B. (1975). Angew. Chem. 87, 461-475.
Dunitz, J. D. \& Pauling, P. (1960). Helv. Chim. Acta, 43, 2188-2197.
Gramaccioli, C. M., Mimun, A. S., Mugnoli, A. \& Simonetta, M. (1973). J. Amer. Chem. Soc. 95, 3149-3154.
Maas, G. (1976). Cryst. Struct. Commun. 5, 107-111.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& DeclercQ, J.-P. (1974). MULTAN 74. Univ. of York, England.

3,4-Dihydro-3,4,4-trimethyl-4,3-borazaroisoquinoline

By Christer Svensson

Division of Inorganic Chemistry 2, Chemical Center, University of Lund, P.O. Box 740, S-220 07 Lund, Sweden
(Received 1 June 1976; accepted 18 June 1976)

Abstract

C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~B}\), orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}, \quad a=$ $13 \cdot 177$ (1), $b=12 \cdot 115$ (1), $c=6 \cdot 392$ (1) $\AA, V=1020 \cdot 3 \AA^{3}$, $Z=4$, F.W. $\quad 174.05 \mathrm{~g} \mathrm{~mol}^{-1}, \quad D_{x}=1.13 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{Cu} K \alpha)=4.4 \mathrm{~cm}^{-1}$. The structure was determined from diffractometer data and refined to $R=0.037$ for 836 observed reflexions. The B atom has a tetrahedral environment with four approximately equal lengths to three $\mathrm{C}(1.62 \AA)$ and one $\mathrm{N}(1.65 \AA)$. The hetero-

atomic ring has a twist conformation with the methyl group on N equatorial.

Introduction. Dewar \& Dougherty (1964) first synthesized and examined the properties of the heteroaromatic 4 -methyl-4,3-borazaroisoquinoline (I). The naming convention used here is that of Dewar \& Dietz (1959). The π-bonding is achieved through donation of the N

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31945 (13 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 11 NZ, England.

